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H. Greenlee50, Z.D. Greenwood60, E.M. Gregores4, G. Grenier20, Ph. Gris13, J.-F. Grivaz16, A. Grohsjean25,
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T. Kurča20, V.A. Kuzmin38, J. Kvita9, F. Lacroix13, D. Lam55, S. Lammers70, G. Landsberg77, P. Lebrun20,
W.M. Lee50, A. Leflat38, J. Lellouch17, J. Leveque45, J. Li78, L. Li48, Q.Z. Li50, S.M. Lietti5, J.G.R. Lima52,
D. Lincoln50, J. Linnemann65, V.V. Lipaev39, R. Lipton50, Y. Liu7, Z. Liu6, A. Lobodenko40, M. Lokajicek11,
P. Love42, H.J. Lubatti82, R. Luna3, A.L. Lyon50, A.K.A. Maciel2, D. Mackin80, R.J. Madaras46, P. Mättig26,

C. Magass21, A. Magerkurth64, P.K. Mal82, H.B. Malbouisson3, S. Malik67, V.L. Malyshev36, H.S. Mao50,
Y. Maravin59, B. Martin14, R. McCarthy72, A. Melnitchouk66, L. Mendoza8, P.G. Mercadante5, M. Merkin38,

K.W. Merritt50, A. Meyer21, J. Meyer22,d, T. Millet20, J. Mitrevski70, R.K. Mommsen44, N.K. Mondal29,
R.W. Moore6, T. Moulik58, G.S. Muanza20, M. Mulhearn70, O. Mundal22, L. Mundim3, E. Nagy15, M. Naimuddin50,
M. Narain77, N.A. Naumann35, H.A. Neal64, J.P. Negret8, P. Neustroev40, H. Nilsen23, H. Nogima3, S.F. Novaes5,

T. Nunnemann25, V. O’Dell50, D.C. O’Neil6, G. Obrant40, C. Ochando16, D. Onoprienko59, N. Oshima50,
N. Osman43, J. Osta55, R. Otec10, G.J. Otero y Garzón50, M. Owen44, P. Padley80, M. Pangilinan77, N. Parashar56,

S.-J. Park22,d, S.K. Park31, J. Parsons70, R. Partridge77, N. Parua54, A. Patwa73, G. Pawloski80, B. Penning23,
M. Perfilov38, K. Peters44, Y. Peters26, P. Pétroff16, M. Petteni43, R. Piegaia1, J. Piper65, M.-A. Pleier22,

ar
X

iv
:0

80
5.

25
76

v3
  [

he
p-

ex
] 

 1
5 

Ju
n 

20
09



2

P.L.M. Podesta-Lerma33,c, V.M. Podstavkov50, Y. Pogorelov55, M.-E. Pol2, P. Polozov37, B.G. Pope65,
A.V. Popov39, C. Potter6, W.L. Prado da Silva3, H.B. Prosper49, S. Protopopescu73, J. Qian64, A. Quadt22,d,
B. Quinn66, A. Rakitine42, M.S. Rangel2, K. Ranjan28, P.N. Ratoff42, P. Renkel79, S. Reucroft63, P. Rich44,

J. Rieger54, M. Rijssenbeek72, I. Ripp-Baudot19, F. Rizatdinova76, S. Robinson43, R.F. Rodrigues3, M. Rominsky75,
C. Royon18, P. Rubinov50, R. Ruchti55, G. Safronov37, G. Sajot14, C. Salzmann23,f , A. Sánchez-Hernández33,

M.P. Sanders17, B. Sanghi50, A. Santoro3, G. Savage50, L. Sawyer60, T. Scanlon43, D. Schaile25,
R.D. Schamberger72, Y. Scheglov40, H. Schellman53, T. Schliephake26, C. Schwanenberger44, A. Schwartzman68,

R. Schwienhorst65, J. Sekaric49, H. Severini75, E. Shabalina51, M. Shamim59, V. Shary18, A.A. Shchukin39,
R.K. Shivpuri28, V. Siccardi19, V. Simak10, V. Sirotenko50, P. Skubic75, P. Slattery71, D. Smirnov55, G.R. Snow67,
J. Snow74, S. Snyder73, S. Söldner-Rembold44, L. Sonnenschein17, A. Sopczak42, M. Sosebee78, K. Soustruznik9,

B. Spurlock78, J. Stark14, J. Steele60, V. Stolin37, D.A. Stoyanova39, J. Strandberg64, S. Strandberg41,
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19IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
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We report on a study of the relative rates of B meson decays into ψ(2S) and J/ψ mesons using
1.3 fb−1 of pp̄ collisions at

√
s = 1.96 TeV recorded by the D0 detector operating at the Fermilab

Tevatron Collider. We observe the channels B0
s → ψ(2S)φ, B0

s → J/ψφ, B± → ψ(2S)K±, and
B± → J/ψK± and we measure the relative branching fractions for these channels to be

B(B0
s → ψ(2S)φ)

B(B0
s → J/ψφ)

= 0.53± 0.10 (stat)± 0.07 (syst)± 0.06 (B),
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B(B± → ψ(2S)K±)

B(B± → J/ψK±)
= 0.63± 0.05 (stat)± 0.03 (syst)± 0.07 (B),

where the final error corresponds to the uncertainty in the J/ψ and ψ(2S) branching ratio into two
muons.

PACS numbers: 13.25.Hw, 14.20.Mr

B meson decays into final states containing charmo-
nium play a crucial role in the study of CP violation and
the precise measurement of neutral B meson mixing pa-
rameters [1]. For CP violation in Bs mixing, Bs → J/ψφ
decays are being used to measure the width difference be-
tween the mass eigenstates and the CP violating relative
phase difference between the off-diagonal elements Γ12

and M12 describing the mixing of neutral B mesons [2, 3].
Since the current experimental results are limited by
statistics, it is important to establish new channels like
the decay B0

s → ψ(2S)φ where these studies can be per-
formed.

The study of B meson decays into several charmonium
states can also be used to constrain the long-distance pa-
rameters associated with color octet production which
are important for the understanding of both mixing in-
duced and direct CP violation [4]. While these modes
have been precisely measured in B+ and B0 decays [5],
an extension of these studies into the B0

s system provides
an important test of quark-hadron duality.

In this Letter we report measurements of B meson de-
cays into charmonium using the channels B+ → J/ψK+,
B+ → ψ(2S)K+, B0

s → J/ψφ and B0
s → ψ(2S)φ.

Charge conjugation is implied throughout. The J/ψ and
ψ(2S) mesons are reconstructed in the dimuon channel
and the φ is reconstructed in the K+K− channel. The
study uses a data sample of pp̄ collisions at

√
s = 1.96

TeV corresponding to an integrated luminosity of approx-
imately 1.3 fb−1 recorded by the D0 detector operating
at the Fermilab Tevatron Collider. Similar studies have
recently been reported by the CDF collaboration [6].

D0 is a general purpose detector described in detail in
Ref. [7]. Charged particles are reconstructed using a sili-
con vertex tracker and a scintillating fiber tracker located
inside a superconducting solenoidal coil that provides a
magnetic field of approximately 2 T. The tracking vol-
ume is surrounded by a LAr-U calorimeter. Muons are
reconstructed using a spectrometer consisting of magne-
tized iron toroids and three super-layers of proportional
tubes and plastic trigger scintillators located outside the
calorimeter. Only data recorded by dimuon triggers were
used for this analysis.

The selection requirements are determined using simu-
lated samples for the four decay modes. The pythia [8]
Monte Carlo (MC) generator is used to model bb̄ pro-
duction and fragmentation, followed by evtgen [9] to
simulate the kinematics of B-meson decay. The detec-
tor response is simulated using a geant [10] based MC.
Simulated events are processed through the same recon-

struction code as used for the data. The dimuon trigger
is modeled using a detailed simulation program incorpo-
rating all aspects of the trigger logic. The trigger simula-
tion is verified using a data sample collected with single
muon triggers. Backgrounds are modeled using data in
the mass sideband regions around the candidate B me-
son.

Muon candidates are required to have track segments
reconstructed in at least two out of the three muon sys-
tem super-layers and to be associated with a track re-
constructed with hits in both the silicon and fiber track-
ers. We require that the muon transverse momentum,
pT , is greater than 2 GeV/c. The charmonium system is
formed by combining two oppositely charged muon can-
didates that are associated with the same track jet [11]
and form a well reconstructed vertex with χ2/DOF < 16.
We require the dimuon pT to be greater than 4 GeV/c.
The invariant mass of the dimuon system is required to
be within 250 MeV/c2 of the nominal charmonium state
mass [5], since the invariant mass resolution is about ≈ 75
MeV/c2. We then redetermine the muon momenta with
a mass constraint imposed when forming the B meson
candidate.

All charged particles within the same track jet as the
dimuon system are considered as kaon candidates and
the kaon mass is assigned. The candidates are required
to have hits in both the silicon and fiber trackers and
have pT > 0.6 GeV/c. Pairs of oppositely charged kaons
with pT > 0.9 GeV/c are combined to form φ candidates.
The expected invariant mass resolution for the φ mesons
is 4 MeV/c2. Therefore the pair of kaons must form a
well reconstructed vertex and have 1.008 < m(K+K−) <
1.032 GeV/c2.

The charmonium candidates are combined with either
a kaon or φ candidate to form either a B+ or a B0

s can-
didate. The B meson daughter particles are required to
form a well reconstructed vertex and have an invariant
mass between 4.4 and 6.2 GeV/c2.

Backgrounds from prompt charmonium production are
reduced by requiring the B meson decay vertex to be dis-
placed from the interaction point in the transverse plane
by more than 4 times the error on the measured displace-
ment for B+ candidates and 6 times the error for B0

s can-
didates. For all candidates, the error on the displacement
measurement is required to be less than 150 µm. Com-
binatorial backgrounds are reduced by requiring the B
candidate momentum vector to be aligned with the posi-
tion vector of the secondary vertex to within 26 degrees.
Possible background contamination from kaons and pi-
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ons misidentified as muons and other source of B decays
which could result in a peaking background have been
studied and found to be negligible.

The resulting mass distributions of the B meson can-
didates are displayed in Figs. 1-4. The B meson yield is
extracted from the data using a binned likelihood fit to
the data assuming a Gaussian component for signal and
a second-order polynominal distribution for background.
The number of signal events is obtained by integrating
the fit functions over the range of interest. This range is
indicated by the two dashed vertical lines in Figs. 1-4 for
each channel, and covers a a region corresponding ±3σ,
where σ is the expected invariant mass resolution. We
see signals in all four channels. The results of the signal
yields, corrected for the background contributions, are
listed in Table I.
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FIG. 1: µ+µ−K± invariant mass distribution for the B± →
J/ψK± data selection. The region between two dashed ver-
tical lines represents the signal window.
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FIG. 2: µ+µ−K± invariant mass distribution for the B± →
ψ(2S)K± data selection. The region between two dashed
vertical lines represents the signal window.

The relative yield of B meson decays into ψ(2S) and
J/ψ mesons is given by

B(B → ψ(2S)M)
B(B → J/ψM)

= (1)

Nψ(2S)M

NJ/ψM
·
εJ/ψM

εψ(2S)M
· B(J/ψ → µ+µ−)
B(ψ(2S)→ µ+µ−)

,
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FIG. 3: µ+µ−φ invariant mass distribution for the B0
s →

J/ψ φ data selection. The region between two dashed vertical
lines represents the signal window.
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FIG. 4: µ+µ−φ invariant mass distribution for the B0
s →

ψ(2S)φ data selection. The region between two dashed ver-
tical lines represents the signal window.

where B is either a B+ or B0
s meson, M is either a

K+ or φ meson, N is the number of signal events re-
turned from the fit, and ε is the reconstruction effi-
ciency determined from MC. The measured branching
fractions B(J/ψ → µ+µ−) = (5.93 ± 0.06) · 10−2 and
B(ψ(2S) → µ+µ−) = (7.5 ± 0.8) · 10−3 are taken from
Ref. [5] and combined into a ratio of branching fractions
B(J/ψ → µ+µ−) /B(ψ(2S) → µ+µ−) = 8.12 ± 0.89.
The uncertainty on the ratio is given by the uncertainty
on the single measured branching fractions assuming no
correlations.

For the measurement of B meson branching fractions
the sources of systematic uncertainties are (i) the branch-
ing fractions of the charmonium mesons to dimuons, (ii)
systematics of the individual signal yield determinations
and (iii) the determination of the efficiencies εψ(2S)φ and
εJ/ψφ. In the ratio many systematic uncertainties cancel,
such as the integrated luminosity, b production and frag-
mentation and the selection efficiencies. However, the
polarization could be different for the B0

s decays. We use
a pure CP-even state for the generated B0

s → ψ(2S)φ
and B0

s → J/ψφ MC.
The relative uncertainties that enter into the calcula-

tion of the relative branching fractions are given in Ta-
ble II. The uncertainty related to the measured charmo-
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TABLE I: Summary of obtained event yields from the fits as
described in the text and signal efficiencies obtained from MC
simulations.

Decay Efficiency Yield
B± → J/ψK+ (1.07± 0.02) · 10−3 6276±97
B± → ψ(2S)K+ (1.14± 0.04) · 10−3 535±30
B0
s → J/ψ φ (14.4± 0.7) · 10−5 565±26

B0
s → ψ(2S)φ (15.2± 0.6) · 10−5 40±8

nium resonance branching fractions enter both measure-
ments and are the same for both. The uncertainties are
treated as uncorrelated and give a combined uncertainty
of 11% on each of the ratios of branching fractions.

The relative statistical uncertainties on the efficien-
cies εψ(2S)K and εJ/ψK are 3.7% and 1.9%, respectively.
They are combined into a single statistical uncertainty on
the efficiency ratio assuming no correlations. To obtain
and estimate the signal yield variation, the background
shape and fit range for the background region are var-
ied. This yields a variation of 3% for B± → ψ(2S)K±

and 0.9% for B± → J/ψ K±. The ratio of branching
fractions B(B± → ψ(2S)K±)/B(B± → J/ψK±) is then
0.63 ± 0.05 (stat) ± 0.03 (syst) ± 0.07 (B).

The relative uncertainties on εψ(2S)φ and εJ/ψφ are
4.5% and 5.6%, respectively. These uncertainties are
combined into a single statistical uncertainty on the effi-
ciency ratio assuming no correlations. As an estimate of
the signal yield variation, the shape of the background as
well as the invariant mass regions for the background es-
timations are changed. This gives a variation of 7.5% for
the B0

s → ψ(2S)φ and 2.1% for the B0
s → J/ψφ signal

yield. The B0
s → J/ψφ and B0

s → ψ(2S)φ MC events
are generated as pure CP-even decays with a B0

s life-
time of 1.44 ps [12]. To account for a possible efficiency
difference related with the different lifetime of the B0

s ,
the B0

s → J/ψφ MC events are weighted according to
the combined world average lifetime [13]. The efficiency
difference is estimated to be 8%, which is taken as an
additional systematic uncertainty. The resulting ratio of
branching fractions is B(B0

s → ψ(2S)φ)/B(B0
s → J/ψφ))

= 0.53 ± 0.10 (stat) ± 0.07 (syst) ± 0.06 (B).

In summary, we have presented the observation of the
decay B0

s → ψ(2S)φ with the decay ψ(2S) → µ+µ− at
D0 and performed a measurement of the ratio of branch-
ing fractions

B(B0
s → ψ(2S)φ)

B(B0
s → J/ψ φ)

= (2)

0.53± 0.10 (stat)± 0.07 (syst)± 0.06 (B).

In addition, a measurement of the ratio of branching frac-
tions

B(B± → ψ(2S)K±)
B(B± → J/ψK±)

= (3)

TABLE II: Relative systematic uncertainties on the ratio of
branching fractions B(B± → ψ(2S)K±)/B(B± → J/ψK±)
and B(B0

s → ψ(2S)φ)/B(B0
s → J/ψφ).

Source Relative Uncertainty [%]
(J/ψ, ψ(2S))K± (J/ψ, ψ(2S))φ

B(J/ψ → µµ) 1.7
B(ψ(2S)→ µµ) 11
Total B 11
εJ/ψ(K±,φ)/εψ(2s)(K±,φ) 4.1 7.2
Event yield ψ(2S) channel 3.0 7.5
Event yield J/ψ channel 0.9 2.1
CP odd-even mixture (J/ψφ) N.A. 8.0
Total (syst) 5.2 13.3

0.63± 0.05 (stat)± 0.03 (syst)± 0.07 (B)

has been performed. These results are competitive and
in good agreement with published measurements [6, 14].
The combination with these measurements should result
in a significant precision improvement on the measured
ratios of branching fractions.
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